
DEBRA THANA SAHID KSHUDIRAM SMRITI MAHAVIDYALAYA
Gangaram Chak, Chak Shyampur, Debra, West Bengal

PROPOSED SYLLABUS (DRAFT) OF

BACHELOR OF SCIENCE WITH COMPUTER SCIENCE
(MULTIDISCIPLINARY STUDIES)

3 – YEAR UNDERGRADUATE PROGRAMME

(w.e.f. Academic Year 2024-2025)

Based on

Curriculum & Credit Framework for Undergraduate Programmes (CCFUP), 2023 & NEP, 2020

Level YR. SEM Course

Type

Course Code Course Title Credit L-T-P Marks

CA ESE TOTAL

B.Sc. in

Physical

Sc./

Math. &

Comp.

Sc.

with

Computer

Science

1st

I

SEMESTER-I
Major

(Disc.-A1)

UG/I/COMP/3/

MJ-A1
T: Introduction to Computers

(To be studied by the students taken Computer Science as Discipline-A)

4 3-1-0 15 60 75

SEC UG/I/COMP/3/S

E-1P
Problem Solving Using Python 3 0-0-3 10 40 50

AEC UG/I/AEC-1T Communicative English-1 (common for all programmes) 2 2-0-0 10 40 50

MDC UG/I/MDC/IT-

1T

3 3-0-0 10 40 50

VAC UG/I/VAC-1T

UG/I/VAC-1P

VAC-01: ENVS (common for all programmes) 4 2-0-2 50 50 100

Minor

(Disc.-C1)

UG/I/COMP/3/

MI-C1

T: Computer Fundamental

P: Office Automation (Using M.S Office)

 (To be studied by the students taken Computer Science as Discipline-C)

4 3-0-1 15 60 75

Semester-I Total 20 400

II

SEMESTER-II
Major

(Disc.-B1)

UG/II/COMP/3/

MJ-B1
T: Introduction to Programming in C

P: Programming in C Lab

(Same as like A1 for students taken Computer Science as Discipline-B)

4 3-0-1 15 60 75

SEC UG/II/COMP/3/

SE-2P
Problem Solving Using Python 3 0-0-3 10 40 50

AEC UG/II/AEC-2T MIL-1 (common for all programmes) 2 2-0-0 10 40 50

MDC UG/II/MDC/IT-

2T
Multi-Disciplinary Course-02 (to be chosen from the list) 3 3-0-0 10 40 50

VAC UG/II/VAC-2T

UG/II/VAC-2P

VAC-02 (to be chosen from the list) 4 4-0-0 10 40 50

Minor

(Disc.-C2)

UG/II/COMP/3/

MI-C2

T: Introduction to Programming in C

P: Programming in C Lab

 (To be studied by the students taken Computer Science as Discipline-C)

4 3-0-1 15 60 75

Summer

Intern.

CS Community Service 4 0-0-4 - - 50

Semester-II Total 24 400

TOTAL of YEAR-1 44 - - - 800

MJ= Major Programme (Multidisciplinary), MN = Minor, A/B = Choice of Major Discipline; C= Choice of Minor Discipline; SEC = Skill Enhancement

Course, AEC = Ability Enhancement Course, MDC = Multidisciplinary Course, VAC = Value Added Course; CA= Continuous Assessment, ESE= End

Semester Examination, T = Theory, P= Practical, L-T-P = Lecture-Tutorial-Practical, MIL = Modern Indian Language, ENVS = Environmental Studie

(Multidisciplinary Studies)

SEMESTER-I

UG/I/COMP/3/MJ-A1: Introduction to Computers Credits 04

Course Objectives:

• Understand the fundamental concepts and characteristics of computers, including their generation and classification.

• Comprehend the basic components of a digital computer, including CPU, ALU, CU, Register set, and memory hierarchy.

• Gain knowledge of communication pathways, input/output devices, and the primary, secondary, cache, and virtual memory.

• Demonstrate proficiency in number systems, including binary, decimal, octal, and hexadecimal, along with arithmetic operations

and complement notation.

• Understand data communication principles, components, and modes, as well as the basics of computer networks, network

topologies, and types.

• Familiarize themselves with operating systems, their functions, classification, and the concepts of multi-programming, multi-

tasking, and multi-processing.

• Gain insights into the booting process and the role of assembler, loader, linker, and interpreter in program execution.

Course Outline:

Introduction to Computers:

1. Introduction: (8 Lectures)

• Definition of computers.

• Classifications of Computes (Micro, Mini, Mainframe, Supercomputers).

• Software/Hardware concepts.

• Terminology (Bit, Byte, Word, Nibble, Computer Languages.

2. Basic Components of Computer: (12 Lectures)

• Computer organization (CPU, CU, ALU, Register set, Communication Pathway, Input/output Devices, Memory Module).

• Understand CPU components: Control Unit (CU), Arithmetic Logic Unit (ALU), and Register set.

• Explore Communication Pathway: Bus, Internal & External Bus, Control, Address & Data Bus.

• Examine Input devices (Keyboard, Pointing devices) and Output devices (Soft copy, hard copy devices).

• Memory Hierarchy: Primary Memory, Secondary Memory, Cache Memory, Virtual Memory.

3. Number System: (15 Lectures)

• Cover Binary, Decimal, Octal, Hexadecimal systems and interconversion.

• Explore Binary-Decimal-Octal Hexadecimal arithmetic, signed & unsigned numbers.

• Learn Complement notation (r’s & (r-1)’s complement), Addition & Subtraction using complement notation.

• Dive into Floating-point representation, Computer codes (Weighted binary, Non-weighted binary, Alphanumeric), BCD addition, Gray to

Binary & Binary to Gray conversion.

4. Data Communication and Computer Network: (15 Lectures)

• Define data communication, examine characteristics, and components.

• Explore modes, media (guided & unguided) for data transmission.

• Understand Channel capacity, delve into Computer Network concepts (Network topology, Types of networks).

• Explore network devices (Hub, Repeater, Switch, Bridge, Router, Gateway).

• Gain basic understanding of e-mail, Search engines, Chatting, Internet conferencing, and Intranet.

5. Operating System: (10 Lectures)

• Define Operating System (OS), understand functions, necessity, classification (CUI & GUI, Single-user, Multi-user).

• Explore concepts: Multi-Programming, Multi-Tasking, Multi-Processing, Booting Process.

• Understand basics of Assembler, Loader, Linker, and Interpreter.

 Suggested Readings:

1. Sinha, P. K., & Sinha, P. (2017). “Computer Fundamentals: Concepts, Systems & Applications.” BPB Publications.

2. Rajaraman, V. (2017). “Fundamentals of Computers.”, PHI Learning.

3. Prakash, S. (2019). “Computer Fundamentals and Programming in C.” Laxmi Publications.

4. Pradhan, S. (2017). ,” Computer Fundamentals: Architecture and Organization.” Oxford University Press.

5. Bharadwaj, A. S. (2017).,” Computer Fundamentals and Applications.” Wiley India.

6. Deo, N. (2017). ,“Fundamentals of Computers.”, Dreamtech Press.

7. Acharya, S., & Kamath, M. V. (2017). ,”Computer Fundamentals.”, Prentice

SEC (Skill Enhancement Course)

UG/I/COMP/3/SE-1P: Web design using HTML and CSS credits: 03

Course Objective:

• Develop a comprehensive understanding of key web technologies and the client-server architecture.

• Acquire proficiency in HTML and CSS, exploring diverse tags, elements, and the fundamental structure of HTML documents.

• Master the art of effective webpage styling using CSS, including selectors, properties, and layout techniques.

• Grasp the principles of responsive web design, mobile optimization, and media query implementation.

• Explore advanced features in HTML, including HTML5 elements, and delve into advanced CSS concepts and best practices.

• Create interactive forms, implement animations and transitions, and explore pseudo-classes and pseudo-elements using HTML and

CSS.

• Recognize and implement web accessibility best practices, utilizing ARIA roles and attributes.

• Introduce and utilize CSS preprocessors.

• Deepen the ability to create advanced responsive layouts with CSS, exploring intricate layout techniques and media query

applications.

• Familiarize themselves with popular CSS frameworks like Bootstrap, integrating pre-built components and styles into web projects.

Course Outline:

1. Introduction to Web Development

• Overview of web technologies.

• Client-server architecture.

• Introduction to HTML and CSS.

2. HTML Fundamentals

• Program Explore HTML tags and elements.

• Understand the document structure in HTML.

• Learn about forms, multimedia, and semantic HTML.

3. CSS Styling Techniques

• Learn CSS for styling web pages.

• Explore CSS selectors and properties.

• Understand layout techniques.

4. Advanced HTML and CSS

• Explore advanced HTML features.

• Learn about HTML5 and its new elements.

• Dive into advanced CSS concepts and best practices.

5. Interactive Elements with HTML and CSS: (5 Hours)

• Create interactive forms using HTML.

• Implement animations and transitions with CSS.

HTML and CSS Practical:

• Create a simple webpage with headings, paragraphs, and a list.

• Design a form with various input types (text, password, radio buttons, and checkboxes).

• Build a table displaying information with proper headers and rows.

• Implement an ordered and unordered list to showcase a set of items.

• Develop a webpage with hyperlinks linking to different sections within the same page.

• Design a responsive navigation bar with dropdown menus.

• Create an HTML page that includes multimedia elements such as images, audio, and video.

• Develop a form that utilizes HTML5 semantic elements (e.g., <article>, <section>).

• Construct a simple HTML5 canvas drawing with basic shapes.

• Implement a webpage with an embedded Google Map.

• Style a webpage using internal CSS to change fonts, colors, and background.

• Create a CSS file and link it to an HTML file for external styling.

• Design a responsive layout using Flexbox for better alignment.

• Use CSS Grid to create a two-dimensional layout with rows and columns.

• Implement CSS transitions for smooth effects on hover or click events.

• Style a form with CSS to enhance its visual appeal.

• Customize the appearance of hyperlinks with different states (normal, hover, visited).

• Create a CSS animation for a specific element on your webpage.

• Style a navigation bar to have a fixed position when scrolling.

• Develop a webpage that replicates a login/signup form with proper validation.

• Create a responsive landing page with a hero section and call-to-action buttons.

UG/I/COMP/3/MI-C1: Computer Fundamental (45 Hours) Credits 04
C1-T: Computer Fundamental (T)

Course Outline:

1. Introduction (3 Hours)

• Define computer and discuss its characteristics.

• Explore the generations of computers and their classifications (Micro, Mini, Mainframe, Super).

• Examine applications of computers and introduce basic concepts of software and hardware.

• Cover fundamental notions such as Bit, Byte, Word, Nibble, and various computer languages.

2. : Basic Components of Computer (7 Hours)

• Discuss the basic organization of a digital computer, including CPU, CU, ALU, Register set, and Communication Pathway.

• Provide a basic explanation of CPU components, such as CU, ALU, and Register set.

• Define Communication Pathway, covering aspects like Bus, Internal and External Bus, Control, Address, and Data Bus.

• Explore input and output devices, including keyboards, pointing devices, and Memory hierarchy.

3. Number System (10 Hours)

• Define positional and non-positional number systems, including Binary, Decimal, Octal, and Hexadecimal.

• Explore binary-decimal-octal-hexadecimal arithmetic, signed and unsigned numbers, and complement notation.

• Cover addition and subtraction operations using complement notation and floating-point representation of numbers.

• Discuss computer codes, including weighted binary codes, non-weighted binary codes, and alphanumeric codes.

4. Data Communication and Computer Network (10 Hours)

• Define data communication, its characteristics, components, and modes.

• Explore data communication media (guided and unguided) and discuss channel capacity.

• Introduce computer networks, covering network topology, types (LAN, MAN, WAN, CCAN, PAN), and network devices.

• Provide a basic understanding of email, search engines, chatting, internet conferencing, and intranet

5. Introduction to System Software and Operating System (15 Hours)

• Define the operating system, its functions, and the need for OS.

• Classify OS based on CUI & GUI and Single or Multi-User systems.

• Introduce concepts of Multi Programming, Multi-Tasking, and Multi Processing.

• Explain the booting process and provide a basic understanding of Assembler, Loader, Linker, and Interpreter

 UG/I/COMP/3/MI-C1P: Office Automation Credits 01

1. M.S Word

• Introduction to Microsoft Word: Comprehensive overview of the Microsoft Word interface, encompassing document creation and seamless

navigation.

• Document Formatting: Mastery of text formatting, paragraph structuring, and meticulous document layout customization.

• Utilizing Styles and Themes: Proficient application and tailored customization of styles, harnessing document themes for harmonized visual

presentation.

• Effective Document Management: Seamless integration of headers, footers, page numbering, tables, and graphics for comprehensive

document management.

2. Microsoft PowerPoint

• Creating Dynamic Presentations: Insightful introduction to the PowerPoint interface, empowering students to craft engaging slides and

incorporate compelling content.

• Customizing Slide Formats: Proficient application of slide layouts, themes, and meticulous customization of slide backgrounds to achieve

visual impact.

• Integrating Multimedia Elements: Seamless insertion of images, audio, and video files to enhance multimedia-rich presentations.

• Elevating Presentation Delivery: Skillful application of animations and transitions to elevate presentation delivery and captivate the

audience.

3. Microsoft Excel

• Essential Spreadsheet Fundamentals: Comprehensive introduction to the Excel interface, encompassing efficient data entry and

fundamental formula application.

• Harnessing Data Analysis Tools: Mastery of sorting, filtering, and conditional formatting tools to facilitate data analysis and

interpretation.

• Visualizing Data with Charts and Graphs: Proficient creation and tailored customization of charts and graphs to effectively

visualize data trends.

• Exploring Advanced Functions: Insightful introduction to advanced functions such as VLOOKUP, SUMIF, and

COUNTIF to unlock powerful data manipulation capabilities.

4. Internet and Email:

• Demonstrate how to sign up and sign in to Gmail and navigate through the Gmail interface.

• Compose an email to someone and include the subject, recipient's email address, and a message describing the event details.

• Create a meeting in Google Meet and participate in the meeting by interacting with other participants.

• Join a Google Classroom using the provided class code and access the course materials shared by the instructor.

• Submit an assignment through Google Classroom and verify the submission.

• Create a new document in Google Docs and share the document with your classmate and make edits to the document

simultaneously with your classmate and observe real-time changes.

• Create a Google Form for conducting a survey about favorite movie genres and include at least five questions

related to movie preferences, share the form link with your classmates and collect responses.

SEMESTER-II

UG/II/COMP/3/MJ-B1: Introduction to Programming in C Credit: 04
Course Objectives:

• Cultivate a profound understanding of programming languages, focusing on 'C,' and encompassing fundamental programming concepts.

• Illuminate key aspects such as Loops, Data reading, stepwise refinement, Functions, Control structures, and Arrays, fostering a holistic

understanding of programming fundamentals.

• Develop the capability to analyze real-world problems and adeptly devise solutions through programming in 'C.'

• Prioritize problem-solving skills, emphasizing the creation of effective algorithms applicable in 'C.'

• Equip students with the ability to formulate efficient algorithms for diverse problem scenarios in the 'C' programming language.

• Familiarize students with the various constructs of programming languages, encompassing conditional statements, iteration, and

recursion in 'C.'

• Enable students to implement devised algorithms effectively using the "C" language.

• Provide hands-on experience in utilizing fundamental data structures like arrays, stacks, and linked lists for problem-solving in 'C.'

• Empower students with the skills to manage file operations adeptly within the context of "C" programming.

B1-T: Introduction to Programming in C Credits: 03

Course Outline:

1. Introduction to Programming (4 Hours)

• Introduction to various programming styles like procedural, object-oriented, and functional.

• Understanding the unique features and practical applications of each style.

• Examining the role of programming in addressing real-world challenges.

• Introduction to Symbolic Constant, Pre-Processor Directives and Header Files.

• Understanding the process of analyzing and deconstructing problems, including identifying inputs and output.

• Basics of thinking algorithmically and expressing ideas using pseudocode and Flowchart.

• Introduction to essential algorithms such as searching, sorting, and recursion.

2. Conditional Statements and Loops (8 Hours)

• Overview of the syntax and structure of the C programming language.

• Understanding different types of variables, data types, and operators in C.

• Learning basic input and output operations in C.

• Exploring control flow statements like if-else, nested if-else, switch-case, break, continue and goto.

• Learning about various loop structures like for loop, while loop, and do-while loop.

• Applying conditional statements and loops in practical scenarios with examples.

3. Arrays and Strings (10 Hours)

• Introduction to arrays and their manipulation techniques in C.

• Exploring string handling functions like strcpy, strcat, strlen, etc.

• Practical exercises focusing on array manipulation and string handling.

4. Functions and Modular Programming (8 Hours)

• Basics of functions including declaration, definition, and invocation.

• Understanding parameter passing mechanisms such as by value and call by references, Recursive functions, Macro function.

• Exploring the principles and advantages of modular programming.

• Implementing modular programs through practice sessions.

5. Storage Classes and Scope (4 Hours)

• Exploring variable scope concepts including local, global, and static.

• Overview of storage classes such as auto, extern, static, and register.

6. Structures and Union (6 Hours)

• Basics of structure declaration and initialization.

• Understanding pointer fundamentals including declaration, dereferencing, and arithmetic operations.

• Exploring the applications of structures and pointers in programming.

7. Pointers (5 Hours)

• Discussion on memory address operators, explanation of declaring pointer types.

• Assignment and initialization of pointers, performing arithmetic operations using pointers.

• Functions that utilize pointers.

• Exploring the connection between arrays and pointers

• Handling pointers within structures.

B1-P: Programming in C (C Lab) Credits: 01

• Write a C program to check whether a given number is even or odd.

• Write a C program to calculate the area of a rectangle.

• Write a C program to calculate the sum of first n even numbers.

• Write a C program to read a number and find factorial.

• Write a C program to find largest number among three numbers.

• Write a C program to check whether a given number is Amstrong or not.

• Write a program to check whether a given number is prime or not.

• Write a program to generate the Fibonacci series up to a given number.

• Write a program to check whether a given string is a palindrome or not.

• Write a C program to implement a simple calculator that performs addition, subtraction, multiplication, and division.

• Implement a C program to find the largest element in an array.

• Write a C program to concatenate two strings.

• Write a C program to swap two numbers.

• Write a C program to perform linear search to find the position of a given element in an array.

• Write a C program to sort an array of integers in ascending order.

 Reference Books:

For C Programming Language

• Byron S Gottfried “Programming with C”, Fourth edition, Tata McGrawhill.

• E. Balagurusamy, “Programming with ANSI-C”, Eight Edition,2008, Tata McGraw Hill.

• Kanetkar Y, “Let us C”, BPB Publications, 2017.

• Brian W. Kernighan & Dennis Ritchie, “The C Programming Language”, Second Edition, Pearson.

 SEC (Skill Enhancement Course)

UG/II/COMP/3/SE-2P: Problem Solving Using Python Credit: 03

Course Objective:

• Introduce fundamental features of Python programming, focusing on industry standards.

• Enable students to apply advanced Python programming features to solve real-world problems.

• Instill a solid understanding of Python programming concepts, libraries.

Course Outline:

• Develop the capability to create applications in various fields using Python.

• Explore computer systems and the Python programming language.

• Emphasize computational thinking and cover Python data types, expressions, operators, variables, assignments, strings, lists, and the Python

standard library.

• Dive into imperative programming, covering Python modules and built-in functions like print() and eval().

• Develop user-defined functions and assignments, emphasizing parameter passing.

• Focus on text data, files, and exceptions, covering strings, formatted output, files, errors, and exceptions.

• Introduce execution control structures, decision control, and the IF statement.

• Cover For LOOP and iteration patterns, including two-dimensional lists, while loop, additional loop patterns, and iteration control statements.

• String, List, Tuples, Dictionaries, Sets.

Python Practical:

• Write a menu driven program to convert the given temperature from Fahrenheit to Celsius and vice versa depending upon users’

choice.

• Check if a number is prime or not.

• Write a Program to calculate total marks, percentage and grade of a student. Marks obtained in each of the three subjects are to be input

by the user. Assign grades according to the following criteria:

Grade A: Percentage >=80

Grade B: Percentage>=70 and <80

Grade C: Percentage>=60 and <70

Grade D: Percentage>=40 and <60

Grade E: Percentage<40

• Write a menu-driven program, using user-defined functions to find the area of rectangle, square, circle and triangle by accepting

suitable input parameters from user.

• Write a Program to display the first n terms of Fibonacci series.

• Write a Program to find factorial of the given number.

• Write a Program to find sum of the following series for n terms: 1 – 2/2! + 3/3! --------- n/n!

• Write a Program to calculate the sum and product of two compatible matrices.

• Create two matrices and perform matrix multiplication using NumPy.

• Write a program to find the square root of a given number.

REFERENCE BOOKS:

1. "Python Programming: A Modular Approach with Graphics, Database, Mobile, and Web Applications" by Sheetal Taneja & Naveen

Kumar, Pearson, 2017.

2. "Python: The Complete Reference" by Martin C. Brown, Osborne/McHraw Hill, 2001.

3. "Core Python Programming" by Wesley J. Chun, Pearson Education, Second Edition, 2007.

4. Introduction to Computing Using Python: An Application Development Focus" by Ljubomir Perkovic, John Wiley & Sons, 2012.

UG/II/COMP/3/MI-C2: Introduction to Programming in C Credit: 04

Course Objectives:

• Cultivate a profound understanding of programming languages, focusing on 'C,' and encompassing fundamental programming concepts.

• Illuminate key aspects such as Loops, Data reading, stepwise refinement, Functions, Control structures, and Arrays, fostering a holistic

understanding of programming fundamentals.

• Develop the capability to analyze real-world problems and adeptly devise solutions through programming in 'C.'

• Prioritize problem-solving skills, emphasizing the creation of effective algorithms applicable in 'C.'

• Equip students with the ability to formulate efficient algorithms for diverse problem scenarios in the 'C' programming language.

• Familiarize students with the various constructs of programming languages, encompassing conditional statements, iteration, and

recursion in 'C.'

• Enable students to implement devised algorithms effectively using the "C" language.

• Provide hands-on experience in utilizing fundamental data structures like arrays, stacks, and linked lists for problem-solving in 'C.'

• Empower students with the skills to manage file operations adeptly within the context of "C" programming.

C2-T: Introduction to Programming in C Credits: 03

Course Outline:

1. Introduction to Programming (4 Hours)

• Introduction to various programming styles like procedural, object-oriented, and functional.

• Understanding the unique features and practical applications of each style.

• Examining the role of programming in addressing real-world challenges.

• Introduction to Symbolic Constant, Pre-Processor Directives and Header Files.

• Understanding the process of analyzing and deconstructing problems, including identifying inputs and output.

• Basics of thinking algorithmically and expressing ideas using pseudocode and Flowchart.

• Introduction to essential algorithms such as searching, sorting, and recursion.

2. Conditional Statements and Loops (8 Hours)

• Overview of the syntax and structure of the C programming language.

• Understanding different types of variables, data types, and operators in C.

• Learning basic input and output operations in C.

• Exploring control flow statements like if-else, nested if-else, switch-case, break, continue and goto.

• Learning about various loop structures like for loop, while loop, and do-while loop.

• Applying conditional statements and loops in practical scenarios with examples.

3. Arrays and Strings (10 Hours)

• Introduction to arrays and their manipulation techniques in C.

• Exploring string handling functions like strcpy, strcat, strlen, etc.

• Practical exercises focusing on array manipulation and string handling.

4. Functions and Modular Programming (8 Hours)

• Basics of functions including declaration, definition, and invocation.

• Understanding parameter passing mechanisms such as by value and call by references, Recursive functions, Macro function.

• Exploring the principles and advantages of modular programming.

• Implementing modular programs through practice sessions.

5. Storage Classes and Scope (4 Hours)

• Exploring variable scope concepts including local, global, and static.

• Overview of storage classes such as auto, extern, static, and register.

6. Structures and Union (6 Hours)

• Basics of structure declaration and initialization.

• Understanding pointer fundamentals including declaration, dereferencing, and arithmetic operations.

• Exploring the applications of structures and pointers in programming.

7. Pointers (5 Hours)

• Discussion on memory address operators, explanation of declaring pointer types.

• Assignment and initialization of pointers, performing arithmetic operations using pointers.

• Functions that utilize pointers.

• Exploring the connection between arrays and pointers

• Handling pointers within structures.

C2-P: Programming in C (C Lab) Credits: 01

• Write a C program to check whether a given number is even or odd.

• Write a C program to calculate the area of a rectangle.

• Write a C program to calculate the sum of first n even numbers.

• Write a C program to read a number and find factorial.

• Write a C program to find largest number among three numbers.

• Write a C program to check whether a given number is Amstrong or not.

• Write a program to check whether a given number is prime or not.

• Write a program to generate the Fibonacci series up to a given number.

• Write a program to check whether a given string is a palindrome or not.

• Write a C program to implement a simple calculator that performs addition, subtraction, multiplication, and division.

• Implement a C program to find the largest element in an array.

• Write a C program to concatenate two strings.

• Write a C program to swap two numbers.

• Write a C program to perform linear search to find the position of a given element in an array.

• Write a C program to sort an array of integers in ascending order.

 Reference Books:

For C Programming Language

• Byron S Gottfried “Programming with C”, Fourth edition, Tata McGrawhill.

• E. Balagurusamy, “Programming with ANSI-C”, Eight Edition,2008, Tata McGraw Hill.

• Kanetkar Y, “Let us C”, BPB Publications, 2017.

• Brian W. Kernighan & Dennis Ritchie, “The C Programming Language”, Second Edition, Pearson.

